OPTIMIZATION THEORY AND ADVANCED NUMERICAL METHODS

Faculty of Electronics Embedded Robotics M.Sc. level

> Ph.D Ewa Szlachcic Department of Automation, Mechatronics and Control Systems Wrocław University of Science and Technology room 219 C-3 email: ewa.szlachcic@pwr.edu.pl

Outlines of lectures

> Introduction

- Optimization problem definition and classification ×
- > Linear programming problem the solution methods for continuous variables
- > Linear programming methods for integer variables
- > Nonlinear programming methods :
- > Optimization methods without constraints
 - > Optimization methods with constraints
- Local optimization methods , Nelder-Meade algorithm, non-gradient algorithms, gradient algorithms
- Global optimization methods– (Genetic algorithms GA, Evolution algorithms EA, Ant Colony algorithms, Particle Swarm optimization algorithms, Harmony Search algorithms HSA).
- Multi-criterial optimization problems Optimization theory and adv. numer. methods Ph.D. eng. Ewa Szlachcic

Faculty of Electronics Embedded Robotics

Literature	Optimization of the multi-dimenstional programming problem
 Nocedal J. and Wright S., Numerical optimization, 2006. Ruszczyński , Nonlinear optimization, Princeton University Press, 2006. Fletcher R., Practical methods of optimization, J. Wiley Ed. 2000. Minoux M., Mathematical programming – Theory and algorithms, J. Wiley &Sor Ed. 2008. Rardin R.L., Optimization in operations research. Prentice Hall Ed. 1998. Stephan Boyd, Convex optimization, Cambridge University Press, 2004 (bv_cxbtook,pdf) Thomas Weise, Global optimization algorithms – Theory and Applications (book,pdf) Eckart Zitzler. <i>Evolutionary Algorithms for Multiobjective Optimization: Methods and Applications</i>, Zurich 1999. Jeffrey Horn, Nicholas Nafplicits, David E. Goldberg: A Niche Pareto Genetic Algorithm for Multiobjective Optimization. IEEE 1994, Volume 1, pp. 82-87. http://delta.cs.cinvestav.mx/~ccoello/EMOO/ 	s Desicion variables vector \mathbf{x} : $\mathbf{x} = [x_1, x_2,, x_n]^T$ where: \mathbf{n} – number of decision variables. Objective function $f(\mathbf{x})$: $f(\mathbf{x}): R^n \longrightarrow R^1$ and \mathbf{m} constraint functions $g_i(\mathbf{x})$: $g_i(\mathbf{x}): R^n \longrightarrow R^1$ dla $i = 1,, m$
Optimization theory and adv. numer. methods Faculty of I Ph.D. eng. Ewa Sztachcic Embedde	lectronics Optimization theory and adv. numer: methods Faculty of Electronic Robotics Ph.D. eng. Ewa Szlachcic Embedded Robotic

Let us find the decision variables vector $\stackrel{\wedge}{x}$, which belongs to admissible solutions in the form:	o a set X of
$X = \left\{ x \mid g_i(\mathbf{x}) \le 0, i = 1, \dots, m \right\}$	
such, that for $\forall \mathbf{x} \in X$	
$f\left(\hat{\mathbf{x}}\right) \leq f(\mathbf{x})$	
It's equivalent to: $\min_{\mathbf{x}\in\mathcal{X}} f(\mathbf{x}) = f\left(\hat{\mathbf{x}}\right)$	
Onlinited to be and adv. surger matheds	Fourth of Floring
Ph.D. eng. Ewa Szlachcic	Embedded Roboti

Quadratic programming problem	
$\max_{\mathbf{x}\in\mathcal{X}} f(\mathbf{x}) = 0.5\mathbf{x}^T \mathbf{A}\mathbf{x} + \mathbf{b}^T \mathbf{x}$	
where:: $\mathbf{Y} = \left\{ \mathbf{y} : \mathbf{D}^T \mathbf{y} \le \mathbf{e} \mathbf{y} \ge 0 \right\}$	
$A = \begin{bmatrix} \mathbf{x} \cdot \mathbf{y} & \mathbf{x} \ge 0 \end{bmatrix}$	
Nonlinear multi-dimentional programming problem with o	constraints
min $f(\mathbf{x}) = (x_1 - 2)^2 + (x_2 - 1)^2$	
With two constraints:	
$x_1^2 \leq x_2$	
$x_1 + x_2 \le 2$	
Onlimization theory and adv. numer. methods	Faculty of Electronics

Nonlinear multi-dimentional optimization problem with the set	of constraints
min $f(x) = 2(x_1)^2 + 4x_1(x_2)^3 - 10x_2x_1 + (x_2)^2$	
$X = \{(x_1, x_2) \mid x_1(x_2)^2 (2.4 + x_2) \le 3$	
$\wedge 3/2x_1 + x_2 \ge 0$	
$\wedge (-3 \le x_i \le 3, i = 1, 2)\}.$	
Onliniation theory and edu, sumer methods	Franks of Florense
Ph.D. eng. Ewa Szlachcic	Embedded Roboti

